
A Kinodynamic steering-method for legged multi-contact locomotion.

Pierre Fernbach1 2, Steve Tonneau1 2, Andrea Del Prete1 2 and Michel Taı̈x1 2

Abstract— We present a novel method for synthesizing
collision-free, dynamic locomotion behaviors for legged robots,
including jumping, going down a very steep slope, or recovering
from a push using the arms of the robot. The approach is au-
tomatic and generic: non-gaited motions, comprising arbitrary
contact postures can be generated along any environment.

At the core of our framework is a new steering method
that generates trajectories connecting two states of the robot.
These trajectories account for the state-dependent, centroidal
dynamic constraints inherent to legged robots. The method,
of low dimension, formulated as a Linear Program, is really
efficient to compute, and can find an application in various
problems related to legged locomotion.

By incorporating this steering method into an existing
sampling-based contact planner, we propose the first kinody-
namic contact planner for legged robots.

I. INTRODUCTION

Legged robots move by creating contacts with the en-
vironment. Now that gaited motions on flat environments
are commonly achieved [1], the community is interested in
synthesizing more complex, multi-contact motions [2].

In our definition a multi-contact motion presents either or
several of the following properties: the contact points are not
coplanar, thus simplified dynamic models such as the linear
inverted pendulum [1], [3] do not apply [4]; as opposed
to walking, the contacts are not created deterministically,
resulting in a combinatorial issue in their choice [5]; the
complex environment results in a high risk of collisions,
and local planning methods might get stuck in local minima.
Addressing these issues simultaneously remains open.

To reduce the complexity of the problem, existing multi-
contact planners make simplifying assumptions, e.g. that
the computed motion comprises static postures [6], [5], [7].
Synthesizing dynamic motions such as jumping or going
down steep slopes is thus impossible.

Our work aims at removing this limitation, by proposing
a kinodynamic planner for multi-contact motions. So far the
approach was restricted to manipulator arms [8], which have
simpler dynamics. Kinodynamic planning requires:
• a steering method that heuristically generates a trajec-

tory between two states of the robot;
• a trajectory validation method that verifies that the

trajectory is collision-free and dynamically feasible.
The efficiency of a planner depends on the computational

efficiency of both methods, and on the success rates of the
validation. We thus introduce two such methods, efficient to

∗ This work is supported by the Loco3D project (ANR-16-CE33-0003)
and the RoboCom++ project.

1 CNRS, LAAS, 7 avenue du colonel Roche, F31400 Toulouse, France
2 Univ de Toulouse, LAAS, F31400 Toulouse, France

compute, specifically designed for capturing the dynamics
constraints of legged robots. They are efficiently written
using two Linear Programs (LP) we introduce. We then inte-
grate these methods within our multi-contact planner [7], and
use it to plan highly-dynamic motions in various scenarios
with the robots HRP-2 and HyQ.

A. State of the art

1) Multi-contact planning: Bretl et al. showed in [9]
that a multi contact planner must address two simultaneous
problems: computing a relevant guide trajectory for the
root of the robot in SE(3) and planning a whole-body
sequence of configurations in equilibrium (in Rn) along the
trajectory. Several contributions rather formulate the issue as
an optimization problem [10], [11], [12]. These approaches
optimize a trajectory from an initial guess that might not
consider the complexity of the environment, which can result
in local minima because of the collision constraints.

While presenting their own limitations, sampling-based
approaches like ours can overcome this problem, at the
risk of combinatorial explosion. For this reason, recent
approaches first plan the root path heuristically, then generate
a contact sequence along this path [5], [13]. We proposed the
first method able to achieve interactive performance [14], be-
fore a similar approach was proposed by [15]. Unfortunately
these geometric approaches require each contact phase (i.e.
a fixed set of contact locations) to be in static equilibrium.
Jumping or walking down steep slopes is thus impossible.

2) Kinodynamic planning: These approaches are well
known for planning dynamic motions for manipulators [8],
[16], [17]. However they do not trivially apply to our case.
First, velocities and accelerations must be added to the sys-
tem state, thus increasing dramatically the dimensionality of
the problem. Then, because of the dynamic constraints (such
as non-slipping contacts), the acceleration bounds depend on
both the contact locations and the position of the Center
of Mass (COM), while existing planners require constant
bounds on the accelerations. To tackle the dimensionality
issue, Pham et al. [18] reduce the dimension of the problem
by applying a time-re-parametrization algorithm on a path in
the configuration space, but the method has only been applied
to manipulators. Our method further reduces dimensionality
of the problem by focusing on the centroidal dynamics of
the robot, while formulating a steering method accounting
for variable acceleration bounds.

3) Computing dynamic constraints: Several methods exist
in the literature to check the static equilibrium of the robot
in non-coplanar cases, which we list in [19]. Some of them
can apply to dynamic scenarios [4], [20]. A method able to



compute the acceleration bounds on the CoM that respect
the non slipping constraints was proposed in [21], but the
efficiency of all this methods depends on the number of
tests that must be performed for a given state. Given that
we compute the dynamic constraints only a few times for a
given state, we use the Linear Programming approach, which
is more computationally efficient in our case.

It thus appears that no existing multi-contact planners can
produce highly-dynamic motion in complex environments
while avoiding local minima, an issue our method tackles.

B. Contributions

We present two theoretical and one practical contributions:
• An extension of the static equilibrium test proposed in

[19] to dynamic cases, faster than previous approaches
in our case;

• An efficient LP to determine the acceleration bounds on
the Center of Mass (COM) of a robot, given its active
contacts and a desired direction of acceleration;

• One of the first kinodynamic planners able to synthesize
truly dynamic multi-contact motions for legged robots.

In the following, we rigorously formulate our problem and
give relevant definitions used throughout the paper (Sec-
tion II). We then detail the construction of our new steering
and trajectory validation methods for multi-contact locomo-
tion (Section III). After that we discuss the integration of
the methods within our existing contact planner (Section IV),
and present the results obtained with the method (Section V),
leaving the discussion on the implications of our work for
the end of the paper (Section VI).

II. PROBLEM DEFINITION AND OVERVIEW

In the remainder of this paper, we use the term dynamic
equilibrium to denote the non slipping constraints of the
robot when its acceleration is non zero.

We formulate the motion planning problem as the issue
of finding a dynamically feasible, collision-free trajectory
S(t) between two states Sinit and Sgoal of a legged robot.
This problem is addressed with an RRT-connect algorithm
[22], where new steering and path validation methods are
introduced to respect the dynamics of the robot.

Our steering method generates a trajectory that is feasible
in the neighborhood of the initial state.

Our path validation method (or, more accurately, trajectory
validation method) determines precisely the part of the
trajectory that is actually feasible, such that all states of the
generated graph are connected through dynamically feasible,
collision free trajectories.

A. Definitions

We define a state as follows :

S =< X,P,N,q > (1)

where:

• X =< c, ċ, c̈ > denote the position, velocity and
acceleration of the COM;

• P =
[
p1 . . .pk

]
, with pi ∈ R3 the position of the i-th

contact point;
• N =

[
n1 . . .nk

]
, with ni ∈ R3 the surface normal of

the i-th contact point;
• q ∈ SE(3) × Rn is the configuration of the robot,

described by n degrees of freedom (dofs) and the root
location. Note that q uniquely defines c.

All positions are expressed in the world frame, and each state
has a variable number k of contacts.

B. Rationale

At each step of a motion planning algorithm, an extension
method (or a steering method, as named in kinodynamic
planning) is called [23]. The steering method is a heuristic
approach to try to connect two states with a feasible tra-
jectory. The inputs of this steering method are an initial
and a goal state S0 =< X0,P0,N0,q0 > and S1 =<
X1,P1,N1,q1 >. The steering method returns a time-
optimal trajectory of duration tf :

X : t ∈ [0, tf ] 7→< c(t), ċ(t), c̈(t) >

such that X(0) = X0 and X(tf ) = X1, and X(t) is
constrained to satisfy the COM acceleration bounds imposed
by the non-sliding constraints at S0.

The trajectory is extended into a whole-body trajectory by
performing a constrained interpolation between q0 and q1 to
follow the COM [24]. It is then validated according to several
constraints, including in our case: collision avoidance, user-
defined bounds on position, and dynamic equilibrium (veri-
fied by the non-sliding constraints associated with each con-
tact phase). Additional user-defined bounds on the velocity
and acceleration of the COM are guaranteed to be respected
by the steering method, and thus do not need verification [8].
The path validation method only returns the part of trajectory
that respects these constraints:

X′ : t ∈
[
0, t′f ≤ tf

]
7→ X(t) (2)

If t′f = 0 there is no valid part in the trajectory, the planner
discards this trajectory and starts a new iteration.

III. STEERING METHOD AND TRAJECTORY
VALIDATION

Our method derives from the well-known Double Integra-
tor Minimum Time (DIMT) method [16], [17], [8]. We use
the DIMT as a black-box method, and refer to [8] for details.
We give the inputs and outputs of the method in our case,
before discussing its extension to legged locomotion.

Given user-defined symmetric bounds on the COM dy-
namics along three orthogonal axis:

−ċmax
{x,y,z} ≤ ċ{x,y,z} ≤ ċmax

{x,y,z}

−c̈max
{x,y,z} ≤ c̈{x,y,z} ≤ c̈max

{x,y,z}
(3)

and given an initial state S0, with X0 =< c0, ċ0,0 >,
and a target state S1 with X1 =< c1, ċ1,0 >, the DIMT



outputs a minimum time trajectory X(t) that connects ex-
actly X0 and X1, without considering collision avoidance.
This trajectory consists, for each joint, in phases of constant
accelerations in a direction. The acceleration at either the
start or goal state is not relevant to the problem, because
only the velocity is continuous in our model and there are
no constraints on jerk. For simplicity we just set it to 0.

The main issue is that for a legged robot, the center of
mass acceleration bounds are neither constant nor symmetric,
but state-dependent (Fig. 1). The bounds correspond to the
non-slipping condition, and are thus determined by the COM
position, as well as the contact points and normals.

Fig. 1: Examples of state-dependent dynamic constraints for
HRP-2. Each color corresponds to a different non coplanar
contact configuration for both feet, while the root position
remains the same. Each polygon represents the pairs center
of mass position / acceleration admissible regarding the non-
slipping condition, considering only the x axis.

To address this issue, we propose a two-step method:
• First, we use the DIMT method with acceleration con-

straints computed for the initial state S0. By doing
so, we increase the odds that the trajectory X(t) be
dynamically feasible in the neighborhood of S0, but not
along the complete trajectory.

• Then, in the trajectory validation phase, we verify
the dynamic equilibrium of the robot, additionally to
collision avoidance, as we progress along the trajectory.
The returned trajectory X′(t) is the part of X(t) that
satisfies all these constraints.

A. Trajectory validation

We first describe how our trajectory validation method is
implemented, because its formulation serves as a basis for
developing our steering method.

1) Inputs and outputs: We consider as inputs two states
S0 and S1, and a trajectory X(t) connecting them. Ad-
ditionally, we consider a discrete set of contact phases
configurations along the trajectory, denoted P(t) and N(t),
with:

P(0) = P0, P(tf ) = P1

N(0) = N0, N(tf ) = N1

The definition of the contact-switch timings is out of the
scope of this paper. In Section IV-A.2 we propose a heuristic
approach, specific to our motion planner.

The output of the trajectory validation is a dynamically
feasible, collision free sub-trajectory of X, X′(t). To do
so, as for a classical path validation method, we discretize
the trajectory, and verify at each discretization step the
constraints. Collision checking is performed classically, thus
we focus on the dynamic equilibrium constraints.

2) Dynamic equilibrium: We formulate a test for dynamic
equilibrium as an LP, extending the static equilibrium test
proposed in [19]. The Newton-Euler equations verify:[

m(c̈− g)

mc× (c̈− g) + L̇

]
=

[
I3 ... I3
p̂1 ... p̂k

]
f (4)

Where :
• m is the total mass of the robot;
• f =

[
f1, f2, ..., fk

]T ∈ R3k is the stacked vector of
contact forces fi, applied at contact position pi;

• g =
[
0 0 −9.81

]T
is the gravity vector;

• L ∈ R3 is the angular momentum (expressed at c).
• p̂i denotes the skew-symmetric matrix associated to pi.
To respect the non-slipping condition, we constrain the

contact forces fi to lie inside a linearized friction cone of
generators Vi, such that [4]:

fi = Viβi with βi ∈ R4 and βi ≥ 0 (5)

which leads to

f = Vβ with β ∈ R4k and β ≥ 0 (6)

where V = diag(
[
V1 ... Vk

]
) ∈ R3k×4k.

We set L̇ = 0 as classically done [25] and rewrite (4):

m

[
I3
ĉ

]
︸ ︷︷ ︸

H

c̈ +m

[
−g

c×−g

]
︸ ︷︷ ︸

h

=

[
I3 ... I3
p̂1 ... p̂k

]
V︸ ︷︷ ︸

G

β (7)

Thus, if there exists a β∗ such that β∗ ≥ 0 and (7) is
satisfied, it means the robot is in dynamic equilibrium. Our
test then boils down to solving the following LP:

find β

s.t. Gβ = Hc̈+ h

β ≥ 0

(8)

B. Computing acceleration bounds for the steering method

Computing plausible bounds for c̈ is essential to increase
the success rate of the steering method. Rather than comput-
ing explicitely all bounds using a double description method,
we use a faster optimization based approach to compute the
bounds in the relevant direction [19]. To estimate the bounds
in the neighborhood of S0 we proceed as follows:
• We call a first time the DIMT with arbitrary large

bounds: −c̈∞{x,y,z} ≤ c̈{x,y,z} ≤ c̈∞{x,y,z}. We obtain a
trajectory composed of phases of constant accelerations.
We then consider a, the direction of the first phase;

• We compute the maximum acceleration c̈max = α∗a,
α∗ ∈ R+ satisfying the non-slipping condition at S0.



In case of force closure, the acceleration is theoritically
unbounded, so we set c̈max = c̈∞{x,y,z};

• Finally, we compute X(t) by calling again the DIMT,
using the projection of α∗a along the x,y, z axes as
bounds: −(α∗a){x,y,z} ≤ c̈{x,y,z} ≤ (α∗a){x,y,z}.

If the acceleration direction a′ returned by the second call to
the DIMT is such that a′ = a, then the bounds are accurate
and the trajectory is dynamically valid in the neighborhood
of S0. In Section V-B we show empirically that in the
majority of cases a′ = a, and that otherwise the bounds
remain valid in the neighborhood of S0.

To compute α∗ we extend (8), by first rewriting (7):

Gβ = Hαa+ h

[
G −(Ha)

] [β
α

]
= h (9)

We can now write the following LP :

find
[
β
α

]
min − α

s. t.
[
G −(Ha)

] [β
α

]
= h[

β
α

]
≥ 0

(10)

If LP (10) has a solution, this state can achieve equilibrium
and the optimal value α∗ gives the maximal COM accelera-
tion achievable along a : c̈max = aα∗0.

We have thus developed a criterion to efficiently verify
the dynamic equilibrium of a robot, as well as the maximum
COM acceleration in a given direction. With this criterion
we write a steering method that generates a time-optimal
trajectory from S0 to S1, feasible in the neighborhood of
S0. The valid part of this trajectory is extracted in the path
validation phase using a similar formulation.

IV. APPLICATION TO MULTI-CONTACT
PLANNING

We integrated our methods within the RB-RRT planner [7]
to generate dynamic multi-contact motions. We only recall
the main aspects of the planner, and refer the reader to our
technical report for other details [26].

RB-RRT is a hierarchical planner that decouples the
motion planning problem in three different phases: first,
the planning of path for the root of the robot, using an
RRT with a simplified model of the robot (P1, Fig. 2);
then the generation of a discrete contact sequence along this
root path (P2), where all contact configurations are in static
equilibrium; finally, the interpolation of the contact sequence
into continuous motion for the robot (P3).

With our method, we transform the path planning prob-
lem P1 into a trajectory planning one, thus removing the
constraint imposing the contact configurations at P2 to be
in static equilibrium. This allows us to address new kind of

scenarios, such as planning a jump, or going down a non
quasi-flat steep slope [19] (a surface for which the friction
cone does not contain the direction opposite to the gravity).

Fig. 2: The HyQ robot, and its simplified representation used
to address P1. The green shapes represent the reachable
workspace of the effectors. The red shape is a bounding box
that must stay collision-free at all times.

A. Planning a root trajectory (P1)

1) Integration of the steering method in P1: RB-RRT is
efficient partly because when addressing P1, the contacts are
not generated, to avoid handling a complex combinatorial.
However, our steering method requires contact information.
We thus approximate the state of the robot as follows: for a
given configuration q, we compute the intersection between
the reachable workspace of each effector and the environ-
ment, assuming an independence of the limbs reachable set.
(Fig. 3). We then assume that a contact exists at the center of
this intersection. We also approximate the COM as the 3D
position of the root, which is equivalent to having a robot
with mass-less limbs [10].

2) Trajectory validation in P1: To validate the trajectory,
we in turn approximate the contact phases P(t) and N(t).
We assume that the contacts are sliding along with the COM
trajectory, as long as the reachable workspace of the effectors
is in collision with the same surface. When this is not true,
we estimate the new contacts and continue. Thus N(t) is
piecewise-constant and P(t) is piecewise-differentiable.

Fig. 3: Approximation of contact locations in P1. Left: the
blue polygons represent the intersection between the reach-
able workspace (approximated as the convex hull of a set of
sampled 3D effector positions [7]) and the environment. The
centroid of this intersection serves as the estimated center of
the contact location (black sphere), from which the contact
extremities are extrapolated (red sphere). Right: the actual
contact locations generated during P2.



1) 2-a) 2-b)

3) 4) 5)

Fig. 4: A jump is composed of a ballistic and a preparation phase, planned sequentially during the path validation phase.

3) Generating jumps: The steering method can produce
a trajectory X(t) between two states S0 and S1 that results
in phases where the number of active contacts falls under
a user-defined threshold (Fig. 4 - 1). When this is detected
during trajectory validation, the planner can try to generate
a jump (depending on a user-defined parameter), as follows:

1) identify the last state where the desired effectors are
still in contact: X(tto) (Fig. 4 - 2a), Fig. 4 - 2b shows
the first invalid state : the front legs are not in contact;

2) then try to compute a feasible take-off velocity ċto such
that a collision free ballistic motion between Sto and
the S1 is feasible. This is achieved by directly applying
the method of Campana et al. [27] (Fig. 4 - 3);

3) compute a trajectory from S0 to Sto (Fig. 4 - 4).
If all these steps are successfully achieved, then a jump

trajectory connecting S0 and S1 has been found (Fig. 4 - 5).

B. Generating dynamic contact configurations (P2)
In the original paper, a discrete sequence of contact

configurations is computed along the root path, using an
LP to test that the generated configurations are in static
equilibrium. Our only modification to P2 is thus to replace
this LP with (8), to generate dynamically feasible contact
configurations, following the root trajectory computed in P1.

Finally, the trajectory interpolation P3 remains unchanged.

V. RESULTS
A. Scenarios

We tested our planner in various scenarios presented in
the companion video. Each scenario highlights a specific
property of our planner. In the figures presented, the blue
and yellow arrows indicate the velocity and acceleration
directions, and their length is equal to their norm.

obstacle avoidance: We compare the trajectories gen-
erated with our planner against the results obtained with
a quasi-static contact planner in a constrained environment
that requires slaloming through obstacles, to show the visual
benefits of our method (Fig. 5). We also demonstrate its
interest over local methods by exhibiting a scenario where
these approaches would get stuck in local minima (Fig. 6).

Fig. 5: The trajectories computed by the kinodynamic version
of our planner (red) are visually more appealing than their
quasi-static counterpart (blue).

Fig. 6: The goal of this problem is located on the platform.
While the blue trajectory is the shortest to reach to the shown
position for a simplified robot, only the red one allows to
reach the velocity required to perform the upcoming jump
in green. Local methods won’t be able to escape the blue
trajectory, contrary to our planner.

push recovery: HRP-2 is pushed towards a wall with
a velocity of 1.5m.s−1. Our planner computes a recovery
motion by using its arm (Fig. 3).

highly dynamic scenarios: HRP-2 goes down a 25◦ or
38◦ slope, on top of which no static equilibrium configuration
exists (Fig. 7). Our planner is able to generate the motion
that allows the robot to reach the end of the slope and stop
safely. Similarly, we plan motions for HyQ along inclined
planes, as well as jumping motions (Fig. 4).



Path Planning Contact Generation Total
Scenario Valid traj. (%) Valid dir. (%) num. nodes time (% tot. time) time (% tot. time) success (%) time (s)

Slalom (HyQ) 95.72 % 65.6 % 491 69.56 % 30.43 % 90 % 85.55
Local minima (HyQ) 95.25 % 69.8 % 315 69.14 % 30.86% 75% 38.31

Steep slope (25◦) (HRP-2) 82.4 % 58.3 % 3895 77.36 % 22.63% 85 % 165.61
Steep slope (38◦) (HRP-2) 80.75 % 56.5 % 5533 87.35 % 12.64% 90 % 679.73

Push recovery (HRP-2) 100 % 100 % 2 0.08 % 99.92% 100 % 5.78
Inclined planes (HyQ) 100 % 100 % 2 0.20 % 99.80% 100 % 2.55

TABLE I: Computation times and success rates by scenario, averaged over 20 runs. Valid traj. is the average portion of the
trajectories that were validated by the trajectory validation method. Valid dir. is the average amount of time the equality
a′ = a is verified. num nodes is the average number of nodes generated by the planner. success records the percentage of
trajectories that were successfully transformed into a sequence of configurations in contact.

Fig. 7: Key captures of HRP-2 going down a 38◦ slope.

B. Benchmarks

To demonstrate the interest of our planner, we performed
different types of benchmarks on the scenarios we propose.
All benchmarks were made using one core of an Intel Xeon
CPU E5-1630 v3 at 3.7GHz with 64Go of main memory.
They measure the overall computation time of the method
and the success rates of the approach (Table I). We also
compared our steering method with naive approaches to
demonstrate the comparative gain it brings (Table II).

Regarding time performances, Table I shows variations
from a few seconds to a few minutes depending on the sce-
nario, an amount of time comparable with the the literature
in dynamic multi-contact locomotion [28], [10] while our
scenarios are longer and more constrained 1.

The time spent by one call to the steering method and
its dynamic validation (disregarding collision checking), re-
spectively 0.35 ms and 0.26 ms in average, summing up
to 0.61 ms. This time is negligeable with respect to the
total time spent by one step of the planner, which averages
to 43.75 ms. Similarly, when attempting to plan a jump,
the average computation time for the steering method and
dynamic validation is 2.55 ms, while the total time spent by
one step including collisions is 9.32 ms.

Regarding the interest of the steering method, Table II
shows that, for the locomotion of legged robots, our approach
outperforms the classic DIMT [8] method with user-defined
bounds : our trajectories are shorter and computed faster,
thanks to a much lower rejection rate. Furthermore, the fact
that our method automatically computes the bounds saves
the need for a sensitive manual parameter tuning.

1We do not provide a more detailed comparison because the mentioned
papers do not indicate precise computation times.

Scenario : Slalom (HyQ)
acc. bounds time (s) valid trajectories solution length (s)
LP (ours) 59.5 95.7% 12.2

6 time-out 0.8% X
4 913.3 69.1% 13.4
2 109.7 90.3 % 22.3

Scenario : Slope (38◦) (HRP-2)
acc. bounds time (s) valid trajectories solution length (s)
LP (ours) 593.7 80.75 % 11.64

6 time-out 0.2% X
4 10992.6 7.6% 16.98
2 time-out 8.8% X

TABLE II: Comparison of planning performances obtained
with user-defined bounds on the admissible acceleration and
those computed with our method. time is the average time for
solving the problem, valid trajectories is the average portion
of the trajectories validated by the trajectory validation
method, solution length is the total time of the solution
trajectory. The time-out is set to 5 hours.

VI. DISCUSSION

The prototype presented in this work is based on an
efficient formulation of the dynamics of a legged robot,
which makes our theoretical contribution directly applicable
with methods related to multi-contact locomotion.

Integrating the steering method within our reachability-
based planner has required the introduction of some heuris-
tics, inherent to its architecture: the contacts are considered
to be sliding and always active, inaccurate in the general
case. However, the desired output of P1 is not the final
root trajectory, but rather a very good initial guess. Indeed,
the approximations are corrected at the contact generation
and interpolation phase (P2 and P3), as demonstrated in our
scenarios: our planner is able to compute highly-dynamic
motions while escaping local minima, on cases never demon-
strated in the literature.

Thus existing methods [10], [28] could benefit from our
method to compute relevant initial guesses, allowing them to
address cluttered environments and to converge faster.

Even though our planner does not get stuck in local
minima, the RRT algorithm does not garantee a globally
optimal solution. For future work, we would like to adapt



existing trajectory optimization methods to our planner or
use an asymptoticaly optimal planner such as RRT* [29].

Regarding the work of Pham et al. [18], despite the
dimensionality reduction achieved by the author, our belief
is that their method does not directly apply to multi-contact
locomotion planning, because considering all the degrees of
freedom of a humanoid robot, while addressing the contact
combinatorial, is simply too expensive. For future work, we
would like to study the adaptation of their formulation of the
problem with our centroidal dynamics approach to reduce its
dimensionality.

VII. CONCLUSION

In this paper we have presented a steering and a trajectory
validation method, designed to address the open multi-
contact planning problem. These methods are based on two
efficient Linear Programs, designed to efficiently capture the
complex, state-dependent dynamics of a legged robot.

Their interest is demonstrated through an integration
within a sampling-based multi-contact planner, which we
use to generate highly-dynamic motions, such as jumps,
or navigation through really steep slopes. These scenarios
cannot be addressed with existing planners. Furthermore our
method is global and does not get stuck in local minima, and
could be used to compute initial guesses for other motion
generation methods.

Our method performs at least as good as existing dynamic
approaches, although obtaining interactive computation times
is an objective we will pursue for future work. Another issue
we would like to address is to propose a shortcut algorithm
for the trajectories computed by our planner.

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE Inter. Conf. on Robotics and
Automation (ICRA), vol. 2, 2003.

[2] C. G. Atkeson, B. P. W. Babu, N. Banerjee, D. Berenson, C. P. Bove,
X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J. P.
Graft, P. He, A. Jaeger, K. K. J. Kim, L. Li, X. L. C. Liu, T. Padir,
F. Polido, G. G. Tighe, and X. Xinjilefu, “What happened at the darpa
robotics challenge, and why?” Carnegie Mellon University, Pittsburgh,
USA, Tech. Rep., 2015.

[3] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point: A
Step toward Humanoid Push Recovery,” IEEE-RAS Inter. Conf. on
Humanoid Robots (Humanoids), 2006.

[4] Z. Qiu, A. Escande, A. Micaelli, and T. Robert, “Human motions
analysis and simulation based on a general criterion of stability,” in
Inter. Symposium on Digital Human Modeling, 2011.

[5] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning
Support Contact-Points for Acyclic Motions and Experiments on HRP-
2,” in Springer Tracts in Advanced Robot (ISER), O. Khatib, V. Kumar,
and G. J. Pappas, Eds., vol. 54, 2008.

[6] T. Bretl, “Motion planning of multi-limbed robots subject to equilib-
rium constraints: The free-climbing robot problem,” The Inter. Journal
of Robotics Research, vol. 25, no. 4, Apr. 2006.

[7] S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon, and
J. Pettré, “A reachability-based planner for sequences of acyclic
contacts in cluttered environments,” in Int. Symp. Robotics Research
(ISRR), Sestri Levante, Italy, 2015.

[8] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits,” in IEEE/RSJ
Inter. Conf. on Intelligent Robots and Systems (IROS), 2014.

[9] T. Bretl, S. M. Rock, J.-C. Latombe, B. Kennedy, and H. Aghazar-
ian, “Free-climbing with a multi-use robot,” in Inter. Symposium on
Experimental Robotic (ISER), 2004.

[10] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Trans. on
Graphics, vol. 31, no. 4, pp. 43:1–43:8, 2012.

[11] A. W. Winkler, F. Farshidian, M. Neunert, D. Pardo, and J. Buchli,
“Online walking motion and foothold optimization for quadruped
locomotion,” in IEEE Inter. Conf. on Robotics and Automation (ICRA),
May 2017.

[12] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabiliza-
tion of trajectories for constrained dynamical systems,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 1366–1373.

[13] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Potential
field guide for humanoid multicontacts acyclic motion planning,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), Japan, 2009.

[14] J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, and N. Mansard,
“A versatile and efficient pattern generator for generalized legged
locomotion,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
Stockholm, Sweden, May 2016.

[15] M. X. Grey, A. D. Ames, and C. K. Liu, “Footstep and motion plan-
ning in semi-unstructured environments using randomized possibility
graphs,” in IEEE Inter. Conf. on Robotics and Automation (ICRA),
2017.

[16] T. Kröger, A. Tomiczek, and F. M. Wahl, “Towards on-line trajectory
computation,” in IEEE/RSJ Inter. Conf. on Intelligent Robots and
Systems (IROS), 2006.

[17] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in IEEE
Inter. Conf. on Robotics and Automation (ICRA), May 2010.

[18] Q.-C. Pham, S. Caron, P. Lertkultanon, and Y. Nakamura, “Admissible
velocity propagation: Beyond quasi-static path planning for high-
dimensional robots,” Inter. Journal of Robotics Research, 2016, first
published November 1, 2016.

[19] A. Del Prete, S. Tonneau, and N. Mansard, “Fast Algorithms to Test
Robust Static Equilibrium for Legged Robots,” in IEEE Inter. Conf.
on Robotics and Automation (ICRA), Stockholm, Sweden, 2016.

[20] S. Noda, M. Murooka, S. Nozawa, Y. Kakiuchi, K. Okada, and M. In-
aba, “Generating whole-body motion keep away from joint torque,
contact force, contact moment limitations enabling steep climbing
with a real humanoid robot,” in IEEE Inter. Conf. on Robotics and
Automation (ICRA), May 2014.

[21] Y. Zheng, M. C. Lin, D. Manocha, A. H. Adiwahono, and C. M. Chew,
“A walking pattern generator for biped robots on uneven terrains,” in
2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct 2010, pp. 4483–4488.

[22] J. Kuffner Jr and S. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE Inter. Conf. on Robotics and
Automation (ICRA), vol. 2, no. April, 2000.

[23] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[24] J. Mirabel, S. Tonneau, P. Fernbach, A. K. Seppala, M. Campana,
N. Mansard, and F. Lamiraux, “HPP: A new software for constrained
motion planning,” in IEEE/RSJ Inter. Conf. on Intelligent Robots and
Systems (IROS), Oct 2016.

[25] S. Caron, Q.-C. Pham, and Y. Nakamura, “Leveraging Cone Double
Description for Multi-contact Stability of Humanoids with Applica-
tions to Statics and Dynamics,” in Robotics, Science and Systems
(RSS), 2015.

[26] S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and
N. Mansard, “An efficient acyclic contact planner for multiped robots,”
in Technical report, 2016.

[27] M. Campana, P. Fernbach, S. Tonneau, M. Taı̈x, and J.-P. Laumond,
“Ballistic motion planning for jumping superheroes,” in Inter. Conf.
on Motion in Games (MIG). San Francisco, California: ACM, 2016,
pp. 133–138.

[28] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in IEEE-RAS Inter. Conf. on
Humanoid Robots (Humanoids), Madrid, Spain, 2014.

[29] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” Int. Journal of Robotics Research, vol. 30, pp. 846–
894, 2011.


